A Robust Estimator of the Tail Index based on an Exponential Regression Model
نویسندگان
چکیده
The objectives of a robust statistical analysis and of an extreme value analysis apparently are contradictory. Where the extreme data are downweighted in robust statistics, these observations receive most attention in an extreme value approach. The most prominent extreme value methods however are constructed on maximum likelihood estimates based on specific parametric models which are fitted to exceedances over large thresholds. So within an extreme value framework some robust algorithms replacing the maximum likelihood part of this methodology can be of use leading to estimates which are less sensitive to few particular observations. This study is motivated by a soil database quality management project, where in the background of Pareto-type tails, automatic identification of suspicious data is needed.
منابع مشابه
Divergence based robust estimation of the tail index through an exponential regression model
The extreme value theory is very popular in applied sciences including finance, economics, hydrology and many other disciplines. In univariate extreme value theory, we model the data by a suitable distribution from the general max-domain of attraction (MAD) characterized by its tail index; there are three broad classes of tails – the Pareto type, the Weibull type and the Gumbel type. The simple...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملRegularized Quantile Regression and Robust Feature Screening for Single Index Models.
We propose both a penalized quantile regression and an independence screening procedure to identify important covariates and to exclude unimportant ones for a general class of ultrahigh dimensional single-index models, in which the conditional distribution of the response depends on the covariates via a single-index structure. We observe that the linear quantile regression yields a consistent e...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملRedescending M-estimators and Deterministic Annealing, with Applications to Robust Regression and Tail Index Estimation
Abstract: A new type of redescending M-estimators is constructed, based on data augmentation with an unspecified outlier model. Necessary and sufficient conditions for the convergence of the resulting estimators to the Hubertype skipped mean are derived. By introducing a temperature parameter the concept of deterministic annealing can be applied, making the estimator insensitive to the starting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003